
J
H
E
P
0
6
(
2
0
0
8
)
1
0
2

Published by Institute of Physics Publishing for SISSA

Received: May 14, 2008

Accepted: June 18, 2008

Published: June 30, 2008

Geometry of all supersymmetric four-dimensional

N = 1 supergravity backgrounds

U. Gran

Fundamental Physics, Chalmers University of Technology,
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4.2.2 ǫ2 = be12 − b̄e2 8

4.3 Geometry 8

4.3.1 ǫ2 = a1 + āe1 8
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1. Introduction

Four-dimensional supergravity coupled to vector and scalar multiplets with N = 1 su-

persymmetry, four supercharges, is a minimal supersymmetric extension of the standard

model. Because of this, it has widespread applications in particle physics phenomenology.

The theory has been developed in stages beginning from the construction of pure super-

gravity [1, 2]. The couplings to the vector and scalar multiplets were added later,1 see

e.g. [3] and references within.

1The theory has appeared in the literature in many different conventions. We shall mostly follow those

of [3], page 212.
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In recent years and following the work of Paul Tod [4], there has been much interest in

the systematic understanding of supersymmetric configurations of supergravity theories. In

lower-dimensional supergravities, the focus has been on the classification of supersymmetric

solutions of four- and five-dimensional theories with more than 8 supercharges, see e.g. [5 –

7]. Special supersymmetric solutions of N = 1 four-dimensional theories are also known.

These include the stringy cosmic strings [8 – 10], domain walls [11 – 13] and pp-waves.

In this paper, we solve the Killing spinor equations of four-dimensional N = 1 super-

gravity coupled to any number of vector and scalar multiplets in all cases. For this we use

the spinorial geometry approach of [14]. We find that there are backgrounds with N = 1,

N = 2, N = 3 and N = 4 supersymmetry. The spacetime metric of backgrounds with

N = 1 supersymmetry admits an integrable, null, Killing vector field. Adapting appropri-

ate coordinates, the metric is given in (3.11) and (3.13). There are two kinds of N = 2

backgrounds. One admits a parallel null, Killing vector field and the metric is that of a

pp-wave. The other admits three Killing vector fields and an additional vector field that

commutes with the three Killing ones. The metric is given in special coordinates (4.18).

These backgrounds are of cohomogeneity one with homogeneous sections either R
2,1 or

AdS3. The N = 3 backgrounds are locally maximally supersymmetric. However, we

have shown by adapting the results of [16] that there are N = 3 backgrounds which arise

as discrete quotients of maximally supersymmetric ones. The maximally supersymmetric

backgrounds are locally isometric to either R
3,1 or AdS4.

This paper has been organized as follows. In section two, we state the Killing spinor

equations which arise from the supersymmetry variation of the fermions of the supergravity

theory. In section three, we solve the Killing spinor equations of N = 1 backgrounds and

describe the geometry of spacetime. In section four, we investigate the solution of the

Killing spinor equations for N = 2 backgrounds. In section five, we show that the N = 3

backgrounds are locally maximally supersymmetric and that the N = 4 backgrounds are

locally isometric to either R
3,1 or AdS4. In section six, we give an example of an N = 3

background which can be constructed as discrete identification of AdS4 and in section

seven we give our conclusions. In appendix A, we present the integrability conditions of

the Killing spinor equations.

2. Killing spinor equations

The Killing spinor equations can be read off from the supersymmetry transformations of

N = 1 supergravity. There are three Killing spinor equations associated with the super-

symmetry transformations of the fermions of the gravitational, gauge and scalar multiplets,

respectively. After some apparent changes in notation from that of [3], the Killing spinor

equations of N = 1 supergravity can be written as follows:

The gravitino Killing spinor equation is

2

[

∇µǫL +
1

4
(∂iK Dµφi − ∂īK Dµφī)ǫL

]

+ ie
K

2 WγµǫR = 0 , (2.1)
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the gaugino Killing spinor equation is

F a
µνγµνǫL − 2iµaǫL = 0 , (2.2)

and the Killing spinor equation associated with the scalar multiplet is

iγµǫRDµφi − e
K

2 Gij̄Dj̄W̄ ǫL = 0 , (2.3)

where ∇ is the spin connection, φi is a complex scalar field, K = K(φi, φj̄) is the Kähler

potential of the (Kähler) scalar or sigma model manifold S, Gij̄ = ∂i∂j̄K, W = W (φi) is a

(local) holomorphic function on S,

DiW = ∂iW + ∂iKW , Dµφi = ∂µφi − Aa
µξi

a , (2.4)

ξa are holomorphic Killing vector fields on S, Aa is the gauge connection with field strength

F a and µa is the moment map, i.e.

Gij̄ξ
j̄
a = i∂iµa . (2.5)

We mostly follow the metric and spinor conventions of [3]. In particular, the spacetime

metric has signature mostly plus, ǫ is a Majorana spinor and ǫL,R = 1
2(1 ± γ5)ǫ, where

γ2
5 = 1. We have set the gauge coupling to 1.

The gravitino Killing spinor equation is a parallel transport equation for a connec-

tion which, apart from the Levi-Civita part, contains additional terms that depend on

the matter couplings. The gauge group of the Killing spinor equations is Spinc(3, 1) =

Sp(3, 1)×Z2 U(1). The Sp(3, 1) acts on ǫ with the Majorana representation while U(1) acts

on the chiral component ǫL with the standard 1-dimensional representation and on the

anti-chiral ǫR with its conjugate. The additional U(1) gauge transformation is due to the

coupling of the spinor ǫ to the U(1) connection constructed from the Kähler potential K

associated with the matter couplings. In what follows, we use only the Sp(3, 1) component

of the gauge group to choose the representatives of the Killing spinors. Incidentally, the

holonomy of the supercovariant connection is contained in Pinc(3, 1). This can be eas-

ily seen from the expression for the integrability condition of the gravitino Killing spinor

equation in appendix A. The additional U(1) component in the holonomy group is again

due the the Kähler potential coupling mentioned above.

3. N = 1 backgrounds

3.1 Killing spinor

The starting point in the spinorial geometry approach [14] to solving Killing spinor equa-

tions is the choice of a normal form for the Killing spinors up to gauge transforma-

tions. We have already mentioned that the gauge group is Spinc(3, 1). It is known that

Sp(3, 1) = SL(2, C) and the chiral (Weyl) representation is identified with the standard

representation of SL(2, C) on C
2. The Majorana representation which is relevant here is

simply 2 ⊕ 2̄ with 2̄ the complex conjugate of 2. Using the explicit realization of spinors

– 3 –
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in terms of forms, the chiral representation is identified with even forms, Λev(C2), and

the anti-chiral with odd ones, Λodd(C2). Introducing a Hermitian basis (e1, e2) in C
2 with

respect to a Hermitian inner product < ·, · >, a basis in Λev(C2) is (1, e12), e12 = e1 ∧ e2,

and a basis in Λodd(C2) is (e1, e2). In particular, the gamma matrices act on Λev(C2) and

Λodd(C2) as

Γ0 = −e2 ∧ +e2y , Γ2 = e2 ∧ +e2y , Γ1 = e1 ∧ +e1y , Γ3 = i(e1 ∧ −e1y) , (3.1)

where y is the adjoint operation of the form skew-product. For later use, we also adopt a

light-cone Hermitian basis in the space of spinors as

γ+ =
√

2 e2y , γ− =
√

2 e2∧ , γ1 =
√

2 e1∧ , γ1̄ =
√

2 e1y . (3.2)

There is one orbit of SL(2, C) on Λev(C2), and so the chiral component of ǫ can be chosen

as 1. In this basis, the Majorana inner product is given by

B(η1, η2) =< Γ12 η∗1 , η2 > , (3.3)

where < ·, · > is the Hermitian inner product on C
2 extended on Λ⋆(C2), and η1, η2 ∈

Λ⋆(C2). Observe that B is a bi-linear. The spacetime forms constructed as spinor bi-

linears are defined as

τµ1...µk
= B(η1, γµ1...µk

η2) , k = 0, 1 . . . , 4 . (3.4)

The Dirac inner product in the (3.1) basis is D(η1, η2) =< Γ0η1, η2 >. Equating the Dirac

and Majorana conjugates, one finds that the complex conjugation operation is imposed by

the anti-linear map, C = −Γ012∗, C2 = 1. Applying this to the spinor 1, one finds that a

Majorana representative for the orbit is

ǫ = 1 + e1 , ǫL = 1 , ǫR = e1 . (3.5)

This can be chosen as the first Killing spinor of the theory. The isotropy group of the

spinor 1 in SL(2, C) is C. This will be used later to choose the second Killing spinor.

3.2 Solution to the Killing spinor equations

Evaluating the gravitino equation on the Killing spinor ǫ = 1 + e1, we find that

− Ω+,+− + Ω+,11̄ +
1

2
(∂iK D+φi − ∂īK D+φī) = 0 ,

Ω+,+1 = 0 ,

−Ω−,+− + Ω
−,11̄ +

1

2
(∂iK D−φi − ∂īK D−φī) = 0 ,

2Ω
−,+1̄ +

√
2ie

K

2 W = 0

−Ω1,+− + Ω1,11̄ +
1

2
(∂iK D1φ

i − ∂īK D1φ
ī) = 0 ,

Ω1,+1̄ = Ω1̄,+1̄ = 0 ,

−Ω1̄,+−
+ Ω1̄,11̄ +

1

2
(∂iK D1̄φ

i − ∂īK D1̄φ
ī) +

√
2ie

K

2 W = 0 , (3.6)
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where Ω is the spin connection of the four-dimensional spacetime metric.

The gaugino equation (2.2) acting on 1 + e1 gives

F a
+1 = F a

+−
= 0, F a

11̄ − iµ(a) = 0 , (3.7)

and similarly the Killing spinor equation of the scalar multiplet (2.3) gives

D+φi = 0,
√

2iD1φ
i = e

K

2 Gij̄Dj̄W̄ . (3.8)

The equations (3.6)–(3.8) is the linear system associated with the N = 1 supersymmetric

backgrounds.

To solve the linear system, substitute D+φi = 0 into (3.6) to find that the gravitino

equations can be rewritten as

Ω+,+− = Ω+,11̄ = Ω+,+1 = Ω−,−+ = Ω1,+1̄ = Ω1,+1 = Ω−,+1 + Ω1,+− = 0 , (3.9)

and

Ω
−,11̄ +

1

2
(∂iK D−φi − ∂īK D−φī) = 0 ,

i
√

2e
K

2 W + 2Ω
−,+1̄ = 0 ,

Ω−,+1 + Ω1,11̄ +
1

2
(∂iK D1φ

i − ∂īK D1φ
ī) = 0 . (3.10)

In what follows, we explore the consequences of the above conditions on the geometry of

spacetime.

3.3 Geometry

To proceed, write the metric in a light-cone Hermitian frame as

ds2 = 2e−e+ + 2e1e1̄ . (3.11)

The spacetime form bilinears associated with the Killing spinor, see (3.4), are proportional

to e− and e− ∧ (e1+e1̄), and their spacetime duals. Setting e− = Xµdyµ, it is easy to see

that (3.9) implies that

∇(µXν) = 0, e− ∧ de− = 0, e− ∧ e1̄ ∧ de1 = 0 . (3.12)

Observe also that e− ∧ e1 ∧ de1 = 0.

The first condition in (3.12) implies that the metric admits a null Killing vector field.

While the second implies that the distribution defined by X is integrable. As a result the

metric can be written as in (3.11) with

e− = Hdu , e+ = dv + V du + widxi , e1 = β1dx1 + β2dx2 , (3.13)

where u, v, xi, i = 1, 2, are real coordinates, H,V,wi are real spacetime functions inde-

pendent of v and β1, β2 are complex spacetime functions. Substituting these into the last

condition in (3.12), we find that the frame e1 and so its complex conjugate e1̄ can be chosen

independent of v.

– 5 –
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In fact, the basis given in (3.13) can be simplified further; one can work in a gauge for

which w1 = w2 = 0 in e+. To see how such a gauge may be chosen, consider the Sp(3, 1)

gauge transformation generated by Rγ+1 + R̄γ+1̄ for R ∈ C, which leaves invariant 1 + e1.

It is straightforward to see that this gauge transformation corresponds to the following

change of basis

e− → e−

e+ → e+ − 4|R|2e− − 2R̄e1 − 2Re1̄

e1 → e1 + 2Re−

e1̄ → e1̄ + 2R̄e− . (3.14)

By making such a gauge transformation, one can set w1 = w2 = 0 in e+. Finally, a co-

ordinate transformation in x1, x2 can be used to eliminate the du term from e1. The basis

is then given by (3.13), with w1 = w2 = 0.

The last two conditions in (3.10) can be rewritten as

√
2e

K

2 We− − ⋆(e1 ∧ de−) = 0 ,

⋆d(e− ∧ e1̄) − 1√
2
e

K

2 W̄e− − i

2
(∂iK D1φ

i − ∂īK D1φ
ī)e− = 0 , (3.15)

where the orientation of the spacetime is chosen as ǫ
−+11̄ = −i. The first condition

in (3.10) cannot be written in a more covariant form. However, if one takes the fields

to be independent of u, then the connection part vanishes.

To solve (3.7), one can locally always choose the gauge Aa
+ = 0. The first two conditions

in (3.7) will then imply that the remaining components of A are independent of v. There

is no general procedure to give an explicit solution for the last condition (3.7).

Next turn into the conditions (3.8) that arise from the Killing spinor equations of the

matter multiplet. In the gauge Aa
+ = 0, the first condition in (3.8) implies that the scalar

fields can be taken to be independent of v, ∂vφ = 0. The last condition in (3.8) can be

interpreted as a holomorphic flow equation. The construction of explicit solutions will

depend on the form of the Kähler potential and W , and so of the details of the model.

4. N = 2 backgrounds

4.1 Killing spinors

The first Killing spinor is the same as that of the N = 1 case investigated above. So we set

ǫ1 = ǫ, where ǫ is given in (3.5). To choose the second Killing spinor, consider the most

general Majorana spinor

ǫ2 = a1 + be12 + C(a1 + be12) , a, b ∈ C . (4.1)

The isotropy group of ǫ1 in Sp(3, 1) is C. This can be used to simplify the expression for ǫ2.

There are two cases to consider. If b = 0, the C isotropy transformation leaves ǫ2 invariant

and

ǫ2 = a1 + āe1 . (4.2)

– 6 –
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Linear independence of ǫ1 and ǫ2 requires that Im a 6= 0.

Next suppose that b 6= 0. After a C transformation with parameter λ, one has

ǫ′2 = (a + λb)1 + be12 + C[(a + λb)1 + be12] . (4.3)

Setting λ = −a
b , one can choose the normal form of ǫ2 as

ǫ2 = be12 − b̄e2 . (4.4)

So the second Killing spinor can be chosen either as in (4.2) or as in (4.4) with a, b promoted

to complex spacetime functions.

4.2 Solution to the Killing spinor equations

4.2.1 ǫ2 = a1 + āe1

Consider first the case for which ǫ2 = a1 + āe1. The linear system is easy to read off from

that of the N = 1 case. In particular, the supercovariant connection along the − light-cone

direction gives

2aΩ
−,+1̄ + i

√
2āe

K

2 W = 0 . (4.5)

Comparing this condition with those of the N = 1 case, one concludes that either W = 0

on the field configurations φ of the solution2 or a = ā. If the latter is the case, then it

turns out that a is also constant and so ǫ2 is not linearly independent from ǫ1. It remains

to choose W = 0. In such a case, one finds that the parameter a is constant, i.e. a ∈ C,

and the additional conditions to those of N = 1 are

Ω−,+1 = 0 , D1φ
i = 0 , W = 0 . (4.6)

Combining these with those of N = 1 backgrounds, we find that the gravitino and matter

Killing spinor equations give

Ω+,+− = Ω+,11̄ = Ω+,+1 = Ω−,−+ = Ω1,+1̄ = Ω1,+1 = Ω−,+1 = Ω1,+− = 0 , (4.7)

and

Ω
−,11̄ +

1

2
(∂iK D−φi − ∂īK D−φī) = 0 , Ω1,11̄ −

1

2
∂īK D1φ

ī = 0 ,

W = ∂jW = 0 , D1φ
i = D+φi = 0 . (4.8)

There are no additional conditions that arise from the gaugino Killing spinor equation

apart from those that we have found in the N = 1 case (3.7).

2This does not imply that W vanishes. It means that W vanishes on the solution for φ.
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4.2.2 ǫ2 = be12 − b̄e2

Next consider the case where ǫ2 = be12 − b̄e2. The gravitino Killing spinor equation gives

∂+b = 0 , bΩ+,−1 + b̄Ω
−,+1̄ = 0 ,

∂−b − Ω
−,11̄b = 0 , Ω−,−1 = 0 ,

∂1b − b(Ω1,−+ + Ω+,−1 + Ω1,11̄) = 0 , Ω1,−1 = 0 ,

∂1̄b − bΩ1̄,11̄ = 0 , Ω1̄,−1 = 0 , (4.9)

where we have used the N = 1 relations to simplify the expressions. Moreover the gaugino

Killing spinor equation gives

F a
−1 = 0 , F a

11̄ + iµa = 0 . (4.10)

In addition, the Killing spinor equation associated with the matter multiplet gives

D−φi = 0 , i
√

2 b̄ D1̄φ
i + be

K

2 Gij̄Dj̄W̄ = 0 . (4.11)

4.3 Geometry

4.3.1 ǫ2 = a1 + āe1

The geometric constraints (4.7) imply that X = e− is covariantly constant with respect

to the Levi-Civita connection. So the spacetime admits a parallel null Killing vector field.

Such a spacetime has an interpretation as a pp-wave. Note, however, that the cosmic string

solutions [8] and their generalizations [9, 10] also admit a null parallel vector field and so

belong to this class of solutions. In particular, one can choose co-ordinates v, u such that

X = ∂
∂v is a Killing vector, and e− = du, i.e. the frame can be chosen as in (3.13) with

H = 1. We have used the same symbol X to denote the one-form and the dual vector field.

The investigation of remaining conditions is similar to that of the N = 1 case. In

particular the first condition in (4.8) does not have a straightforward interpretation unless

one takes the fields to be independent of u. In such a case the connection term vanishes.

The second condition in (4.8) can be written as

⋆d(e− ∧ e1) − i

2
(∂iK D1φ

i − ∂īK D1φ
ī)e− = 0 . (4.12)

The conditions on W in (4.8) imply that the solution for the scalars should be chosen such

that the superpotential W and its first derivative vanish.

The restrictions on φ in (4.8) can be interpreted as light-cone pseudo-holomorphicity

conditions. However notice that the light-cone almost-hermitian distribution (e+, e1) is

not integrable in general. However if one takes the fields to be independent of u, (e+, e1)

is integrable and D+φi = D1φ
i = 0 are light-cone holomorphicity conditions. Moreover in

such a case, one can always choose a gauge locally such that Aa
+ = Aa

1 = 0, since F+1 = 0,

and so write ∂+φi = ∂1φ
i = 0.

– 8 –
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4.3.2 ǫ2 = be12 − b̄e2

To analyze the conditions (4.9) which arise from the Killing spinor equations in this case,

it is convenient to define the 1-forms

X = e−, Y = |b|2e+, Z = b̄e1 + be1̄, W = ib̄e1 − ibe1̄ . (4.13)

Observe that Z is orthogonal to X,Y,W , and W is orthogonal to X,Y,Z. Then it is

straightforward to show that the Killing spinor equations imply that X, Y and Z are all

Killing vectors. Furthermore, W is closed, dW = 0. In addition, one finds the following

constraints on the vector field commutators:

[W,X] = [W,Y ] = [W,Z] = 0 (4.14)

and

[X,Y ] = cZ, [X,Z] = −2cX, [Y,Z] = 2cY , (4.15)

where c = b(Ω−,+1 −Ω+,−1) and we use the same symbols to denote the vector fields their

dual one-forms.

Consider the commutator [X,Y ] = cZ. Since W commutes with the other three

vector field, the Jacobi identity implies that Wc = 0. Similarly, the Jacobi identity for

Z,X and Y together with the linear independence of these three vector field imply that

Xc = Y c = Zc = 0. So c can be taken to be a constant.

Next, since Z and W commute one can choose coordinates x, y such that Z = ∂x and

W = ∂y. Moreover, the rest of the commutators imply that there are additional coordinates

u, v such that

X = e2cx∂v, Y = e−2cx

(

(c2v2 + 2cλ(u)v + ν(u))∂v + (cv + λ(u))∂x + ρ(u)∂y + ∂u

)

,

(4.16)

where λ, ν and ρ are arbitrary functions of u. The functions λ and ρ can be eliminated

using a u-depedent shift transformation in v and y. The resulting expression for Y is as

in (4.16) with λ = ρ = 0. The rest of the vector fields remain unchanged. Using (4.13),

one can compute the frame in terms of the coordinates x, y, v, u to find

e− = e2cx|b|2du , e+ = e−2cx(dv − (c2v2 + ν)du) ,

e1 = b[(dx − idy) − cvdu] , e1̄ = b̄[(dx + idy) − cvdu] . (4.17)

Hence the spacetime metric can be written as

ds2 = 2|b|2[ds2(M3) + dy2] , (4.18)

where

ds2(M3) = du(dv − (c2v2 + ν)du) + (dx − cvdu)2 , (4.19)

and ν is a function of u, ν = ν(u). However, by direct examination of the Riemann

curvature tensor, we find that the 3-manifold with metric ds2(M3) is either R
2,1 if c = 0,

or AdS3 if c 6= 0.

– 9 –
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The function b depends only on y, satisfying

db

dy
=

√
2|b|2eK

2 W +
1√
2
e

K

2 b
(

b∂iKGij̄Dj̄W̄ − b̄∂īKGījDjW
)

. (4.20)

If b is taken to be real, the above equation can be further simplified to write

d log b

dy
=

√
2e

K

2 Re W , iIm W +
1

2

(

∂iKGij̄Dj̄W̄ − ∂īKGījDjW
)

= 0 . (4.21)

Clearly, the spacetime is of cohomogeneity one with homogenous section either AdS3 or

R
2,1. So this class of N = 2 solutions can be thought of as domain wall spacetimes.

The gaugino Killing spinor equation implies that

F a = 0, µa = 0 . (4.22)

So the gauge connection is flat and can locally be set to zero. The vanishing of the moment

map restricts the scalars to lie on a Kähler quotient of S.

The scalars φi are independent of v. Since we have set A = 0 locally, the additional

constraints on Dφi imply that ∂xφi = ∂uφi = 0. Moreover, the remaining Killing spinor

equations of the scalar multiplet (4.11) gives

dφi

dy
= −

√
2 be

K

2 Gij̄Dj̄W̄ . (4.23)

Observe that this expression depends on b. This is again a flow equation driven by the

holomorphic potential W . One can change parameterisation to simplify the flow equa-

tions (4.20) and (4.23). The construction of explicit solutions depends on the details of the

models.

5. N = 3 and N = 4 backgrounds

5.1 Killing spinors

To find the Killing spinors of N = 3 backgrounds, we use the gauge group to bring the

normal to the Killing spinors to a canonical form as in [15]. Since there is a single orbit

of Sp(3, 1) on the space of Majorana spinors, we can always choose the normal direction

to the three Killing spinors to be i(e2 + e12) with respect to the Majorana inner product,

A(ζ, η) =< Γ12ζ
∗, η >, where <,> is the standard Hermitian inner product. The orthog-

onal directions to i(e2 + e12) are {ηr} = {1 + e1, e2 − e12, i(e2 + e12)}. So the three Killing

spinors can be chosen as

ǫr =
∑

s

frsηs , r, s = 1, 2, 3 , (5.1)

where (frs) is a real 3× 3 invertible matrix of spacetime functions. Schematically we write

ǫ = fη.

In the N = 4 backgrounds, the Killing spinors can again be written as a linear com-

bination of the basis {1 + e1, i(1 − e1), e2 − e12, i(e2 + e12)} of Majorana spinors with real

spacetime functions as coefficients. Next we shall solve the Killing spinor equations for

both cases.

– 10 –



J
H
E
P
0
6
(
2
0
0
8
)
1
0
2

5.2 Solution to the Killing spinor equations

Let us begin with the N = 3 case. We shall first solve the Killing spinor equations

locally. To proceed observe that (5.1) implies that schematically ǫL = fηL and ǫR = fηR.

Substituting this into the gaugino (2.2) and chiral (2.3) Killing spinor equations, one finds

that the dependence on (f) can be eliminated, because f is invertible. Moreover the

conditions that one obtains are those of (3.7), (3.8), and (4.10) and (4.11) for b = 1 and

b = i. These imply that

F a
µν = Dµφi = DiW = µa = 0 . (5.2)

Since the gauge connection is flat, we can locally set the gauge potential to vanish, Aa
µ = 0.

As a result the second equation implies that φ are constant. Substituting these data into

the gravitino Killing spinor equation, and taking its integrability condition, we find that

Rµν,ρσγρσηL + 2eKWW̄γµνηL = 0 . (5.3)

Clearly the integrability condition takes values in spin(3, 1). Since the isotropy group of

three linearly independent spinors in Sp(3, 1) is the identity, (5.3) implies that

Rµν,ρσ = −eKWW̄ (gµρgνσ − gµσgνρ) . (5.4)

It is easy to see that (5.2) and (5.4) are precisely the conditions that one gets for back-

grounds that admit N = 4 supersymmetries. So one concludes that N = 3 backgrounds

admit locally an additional supersymmetry and so are locally maximally supersymmet-

ric. Furthermore (5.4) implies that the spacetime is either R
3,1 or AdS4. In the former

case, eK |W |2 = 0 and in the latter eK |W |2 6= 0 when evaluated at the constant maps φ,

respectively.

The moment map condition in (5.2), µa = 0, together with the remaining constant

gauge transformations imply that the constant maps φ take values in a Kähler quotient

of the sigma model target space S. It remains to investigate DiW = 0. Suppose that

we have chosen some constant maps φ = φ0. If W (φ0) = 0, then DiW = 0 implies that

∂iW (φ0) = 0. So W and its first derivative vanish at φ = φ0. On the other hand if

W (φ0) 6= 0, DiW = 0 relates the value of the first derivative of W to that of the Kähler

potential at φ = φ0.

6. Supersymmetric quotients

Supersymmetric solutions of N = 1 four-dimensional supergravity theories can be con-

structed by taking quotients of maximally supersymmetric solutions with respect to a

discrete subgroup of the isometry group. Here we shall not investigate all possible cases,

instead we shall present an explicit construction of an N = 3 background from a discrete

quotient of AdS4. A similar question has been raised in [16] in the context of N = 2

supergravity theory. To proceed, consider the gravitino Killing spinor equation equation

for an N = 3 solution which is locally isometric to AdS4. We take the gauge connection to
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be trivial and so the scalars to be constant. As W and K are constant, it is convenient to

set

W = −iReiθ (6.1)

for real R, θ, with R > 0. Furthermore, define ℓ by

ℓ =
e−

K

2

R
(6.2)

and set

ǫ̂ = e−
iθ

2 ǫL + e
iθ

2 ǫR . (6.3)

Observe that ǫ̂ is Majorana. Then the Killing spinor equation implies that

∇µǫ̂ +
1

2ℓ
γµǫ̂ = 0 . (6.4)

The general solution to this equation has been constructed in [16] using the same notation.

In particular, one defines the following real basis for AdS4:

e0 = ℓ cosh ρ

(

dt +
1

2
r2dx

)

,

e1 =
ℓ

2
r2 cosh ρdx ,

e2 = ℓdρ ,

e3 =
ℓ

r
cosh ρdr , (6.5)

for x, ρ ∈ R, t ∈ [0, 2π), r > 0. The smooth quotient is obtained by making the identifica-

tion x ∼ x + 2k. In order to demonstrate how taking this quotient breaks the supersym-

metry from N = 4 to N = 3, it suffices to exhibit four Majorana spinors which are globally

well-defined on AdS4, such that three of these spinors remain globally well-defined in the

quotient geometry, whereas the fourth fails to be globally well-defined. These Majorana

spinors can be read off directly from equation (24) of [16]:

ǫ̂1 = e
iπ

4

(

2r

(

cosh
ρ

2
− i sinh

ρ

2

)

(1 + e12) + 2r

(

sinh
ρ

2
− i cosh

ρ

2

)

(e1 − e2)

)

,

ǫ̂2 = 2eit

(

cosh
ρ

2
+ i sinh

ρ

2

)

1 − 2eit

(

sinh
ρ

2
+ i cosh

ρ

2

)

e2

+2e−it

(

cosh
ρ

2
− i sinh

ρ

2

)

e1 + 2e−it

(

sinh
ρ

2
− i cosh

ρ

2

)

e12 ,

ǫ̂3 = 2ieit

(

cosh
ρ

2
+ i sinh

ρ

2

)

1 − 2ieit

(

sinh
ρ

2
+ i cosh

ρ

2

)

e2

−2ie−it

(

cosh
ρ

2
− i sinh

ρ

2

)

e1 − 2ie−it

(

sinh
ρ

2
− i cosh

ρ

2

)

e12 ,

ǫ̂4 = ie
iπ

4

(

2

r
(1 − ir2x)

(

cosh
ρ

2
− i sinh

ρ

2

)

1 − 2

r
(1 + ir2x)

(

sinh
ρ

2
− i cosh

ρ

2

)

e1

−2

r
(1 − ir2x)

(

sinh
ρ

2
− i cosh

ρ

2

)

e2 −
2

r
(1 + ir2x)

(

cosh
ρ

2
− i sinh

ρ

2

)

e12

)

. (6.6)
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Clearly, ǫ̂1, ǫ̂2 and ǫ̂3 remain well-defined on making the identification x ∼ x+2k. However,

as ǫ̂4 contains terms linear in x, ǫ̂4 fails to be globally well-defined in this quotient of AdS4,

and hence this solution is an N = 3 solution. It may worth re-investigating the number

of supersymmetries preserved by this solutions after introducing appropriate flat but no

trivial gauge and scalar fluxes.

7. Conclusions

We have solved the Killing spinor equations of N = 1 supergravity coupled to any num-

ber of vector and scalar multiplets. In particular, we have determined the geometry of

spacetime in all cases. We have shown that there are backgrounds with any number of

supersymmetries ranging from N = 1 to N = 4. N = 1 backgrounds admit a single null,

integrable, Killing vector. N = 2 backgrounds admit either a single parallel, null, vector

field or three Killing vector fields. In the former case, the spacetime has an interpretation

as a pp-wave. In the latter, the metric can be written in special coordinates, and the

spacetime is of co-homogeneity one with homogenous section either R
2,1 or AdS3. Such

backgrounds can be thought of as domain walls. N = 3 backgrounds are locally maximally

supersymmetric. In addition there are backgrounds which admit N = 3 supersymmetry

which can be constructed as discrete identifications of maximally supersymmetric ones.

The maximally supersymmetric backgrounds are locally isometric to either R
3,1 or AdS4.

We have not been able to solve explicitly all the equations. Supersymmetry imposes

strong restrictions in all backgrounds which admit more than one supersymmetry, N > 1.

Some of the remaining equations are either holomorphic flow or standard flow type of

equations. So many qualitative results can be obtained by investigating the properties of

the vector fields which generate the flow. In particular, the N = 2 domain wall backgrounds

are associated with standard flow equations. Explicit solutions can be obtained for special

models. Although, we have given an example of an N = 3 background which can be

constructed as discrete identification of a maximally supersymmetric one based on [16], we

have not investigated all N = 3 backgrounds that can be obtained in this way. It may be

possible to construct all such backgrounds utilizing the results of [17].
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A. Integrability conditions

There are three integrability conditions that can be derived from the Killing spinor equa-

tions in section 2. The first is obtained by commuting two gravitino variations,

[

Rµν,ρσγρσ + 2(∂iK D[µDν]φ
i − ∂īK D[µDν]φ

ī) + 2eKWW̄γµν

]

ǫL (A.1)

+4ieK/2DiWD[µφiγν]ǫR = 0 ,
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the second by commuting the gravitino and gaugino variations,

2∇µ(F a
ρσγρσ − 2iµa)ǫL − ieK/2W (F a

ρσγρσ − 2iµa)γµǫR = 0 , (A.2)

and the third by commuting the gravitino and scalar variations,

2(DµDρφ
i)γρǫR + eKGij̄(Dj̄W̄ )WγµǫR (A.3)

+Dρφ
iγρ

(

(∂iK Dµφi − ∂īK Dµφī)ǫR + ieK/2W̄γµǫL

)

+2ieK/2

[

1

2
(∂lK Dµφl − ∂l̄K Dµφl̄)Gij̄Dj̄W̄

+∂lG
ij̄DµφlDj̄W̄ +∂l̄G

ij̄Dµφl̄Dj̄W̄ +Gij̄DµDj̄W̄

]

ǫL = 0 .

It is clear from the integrability condition of the gravitino that the holonomy of the super-

covariant connection is included in Pinc(3, 1).
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